

Analysis of Fatigue and Other Cumulative Ageing to Extend Lifetime - FOUND (VTT, Aalto)

LTO Procedure and Application Case Study

SAFIR2018 INTERIM SEMINAR 24.3.2017 Otso Cronvall

VTT Technical Research Centre of Finland

Overview of FOUND – Scope of research

- 1. Remaining lifetime and LTO of components having defects
- 2. Susceptibility of BWR RPV internals to degradation mechanisms
- Fatigue usage of primary circuit
- 4. Fatigue and crack growth caused by thermal loads
- 5. Development of RI-ISI methodologies
- 6. Dynamic loading of NPP piping systems
- Residual stress relaxation in BWR NPPs.
- → Overview of the research performed in other work packages is presented in the Interim Report

Contents of Presentation

- Introduction Regulatory Framework
- Flow Chart of LTO Procedure
- Verification of Preconditions
- Scoping and Screening
- Assessment and Management of Structures & Components for LTO
- Revalidation of Safety Analyses
- Case Study OL1/OL2 RPV & Internals

Introduction – Regulatory Framework

- Based on IAEA LTO Guidelines
 - IAEA-TECDOC-1736 (IGALL) - Approaches to Ageing Management for Nuclear **Power Plants**
 - IAEA Safety Report no. 57 -Safe long term operation of nuclear power plants
 - Etc.
- Review for STUK
 - YVL Guides, e.g. A.8

GUIDE YVL A.8 / 20 May 2014

AGEING MANAGEMENT OF A NUCLEAR FACILITY

1_	INTRODUCTION	3
2	SCOPE OF APPLICATION	4
3	GENERAL REQUIREMENTS	5
4	DESIGN AND PROCUREMENT	6
5	FABRICATION	7
6	Operation	7
7	CONDITION MONITORING AND MAINTENANCE	7
7.1 7.2 7.3 7.4	Condition monitoring Maintenance Programmes and instructions Spare parts	7 8 9
8	Modifications	10
9	DOCUMENTS TO BE SUBMITTED	10
9.1 9.2 9.3	Plan for principles of ageing management Ageing management programme Ageing management follow-up report	10 11 11
10	REGULATORY OVERSIGHT BY THE RADIATION AND NUCLEAR SAFETY AUTHORITY	12
DEFINITIONS		12
References		13
ANNEX A TYPICAL AGEING MECHANISMS		14

With regard to new nuclear facilities, this Guide shall apply as of 1 June 2014 until further notice. With regard to operating nuclear facilities and those under construction, this Guide shall be enforced through a separate decision to be taken by STUK.

Second, revised edition

ISBN 978-952-309-153-5 (print) Kopijyvä Oy 2014 ISBN 978-952-309-154-2 (pdf) ISBN 978-952-309-155-9 (html)

STUK-SÄTEILYTURVAKESKUS Osoite/Address • Laippatie 4, 00890 Helsinki

STRALSÄKERHETSCENTRALEN Postiosoite / Postal address • PL / P.O. Box 14. FIN-00881 Helsinki, FINLAND RADIATION AND NUCLEAR SAFETY AUTHORITY Pub./Tel. (09) 759 881, +358 9 759 881 • Fax (09) 759 88 500, +358 9 759 88 500 • www.stuk.fi

IAEA TECDOC SERIES

IAFA-TECDOC-1736

Approaches to Ageing Management for **Nuclear Power Plants**

International Generic Ageing Lessons Learned (IGALL) Final Report

Flow Chart of LTO Procedure acc. to IAEA Safety Report No. 57

Long Term Operation Process

Verification of Preconditions - 1

PRECONDITIONS FOR LONG TERM OPERATION (LTO):

- The existing NPP programs and documentation are needed in developing LTO.
- The following NPP programs &documentation are considered for LTO:
 - a) Plant programs,
 - A management system that addresses quality assurance and configuration management,
 - c) Original safety analyses involving time limited assumptions,
 - d) Current safety analysis report or other licensing basis documents.

Verification of Preconditions - 2

PLANT PROGRAMS:

- Plant programs are a planned set of activities that are done to achieve the purpose for which the plant was constructed.
- Plant programs listed below are considered preconditions for LTO and are necessary to support the modifications for LTO associated with ageing management:
 - a) Maintenance,
 - b) Equipment qualification,
 - c) In-service inspection (ISI),
 - d) Surveillance and monitoring,
 - e) Monitoring of chemical regimes.

Scoping and Screening - 1

SCOPE SETTING PROCESS:

- The scope setting process is carried out at the level of systems & structures & components, whereas the screening process is described at the level of structures & components.
- The systems & structures & components within the scope of LTO are those that are important to safety, e.g. reactor coolant pressure boundary.
- Other systems & structures & components within the scope of LTO are those whose failure may impact upon the safety important components.

SCREENING PROCESS:

- The structures & components are screened to determine:
 - which are subject to revalidation of degradation analyses, and
 - which require evaluation of programs for managing ageing.

Scoping and Screening - 2

limited assumptions

Assessment & Management of Structures/Components for LTO

- Once the scope setting and screening process has been completed, the systems & structures necessary for safe LTO are identified.
- The next step is to assess the conditions of structures & components and justify that their integrity will be managed acc. to current licensing basis for the planned LTO period.
- The ageing management review consists of the following steps:
 - a) assessment of the current conditions of the plant,
 - b) identification of ageing degradation effects,
 - review of the existing plant programs and proposed programs for ageing management,
 - d) demonstration that ageing degradation effects are being managed,
 - documentation of the evaluation and demonstration that the effects of ageing for structures & components will be managed for the planned LTO period.

Revalidation of Safety Analyses - 1

According to IAEA Safety Report 57 [1], the safety analyses that are to be revalidated for LTO are those that e.g.:

- Involve systems & structures & components within the scope of LTO.
- Consider the effects of ageing degradation.
- Involve degradation extrapolation based on current plant operation.
- Examples for which the safety analysis typically involves time dependency:
 - Irradiation embrittlement of the RPV,
 - Thermal and mechanical fatigue,
 - Thermal ageing,
 - Loss of preload or material.
- The selection of degradation mechanisms and components for safety analysis revalidation is to follow the requirements by STUK, see YVL Guide A.8.

02/05/2017

Revalidation of Safety Analyses - 2

Example of time dependent DM - Irradiation embrittlement:

- Depends on the fluence, which is monitored and can also be simulated.
- Decrease of fracture toughness and increase of yield & ultimate strength.

- The degradation mechanisms covered in the TLAAs concerning OL1/OL2 RPV and its internals are:
 - Irradiation embrittlement
 - Thermal embrittlement
 - Fatigue; low-cycle, high-cycle, environmental, flow induced vibration,
 - SCC; IGSCC, IASCC,
 - General corrosion
 - Local corrosion
 - Erosion corrosion, Flow accelerated corrosion,
 - Interaction of degradation mechanisms.
- As can be seen, the scope of covered degradation mechanisms is much larger than that specified in the IAEA Safety Report No. 57 [1]

- Of the 31 considered components, those that screened IN are:
 - Steam outlet nozzles,
 - Feedwater nozzles,
 - Control rods,
 - Control rod guide tubes,
 - Core shroud, Core shroud support,
 - Pump deck,
 - Core shroud support legs,
 - Instrumentation guide tubes and nozzles,
 - Control rod guide tubes and nozzles at RPV bottom,
 - Cylindrical RPV shell,
 - Shutdown cooling nozzles,
 - Core spray nozzles.

FE Models Created for the Analyses:

- TLAA Results and Conclusions:
 - According to the results the operational lifetime of the OL1/OL2 RPV and its internals can be safely continued from 40 to 60 years.
 - According to the conservative TLAA results, the degradation in terms of crack growth is in most cases very or extremely slow.
 - In the few cases with faster crack growth the cracks would be detected in the inspections well before they grow to any critical size.
 - Result example Feedwater nozzles:
 - The degradation potential is very small.
 - The relatively high structural risk result for this component is governed by the high consequence measure value.
 - Main conclusion: LTO from 40 to 60 years is safe for the OL1/OL2 RPV and its internals!!!
 - => This study will be published as a dissertation within SAFIR2018.

VTT creates business from technology