Development and Validation of CFD Methods for Nuclear Reactor Safety Assessment

SAFIR2018 Interim Seminar
24 March 2017, Innopoli, Espoo, Finland

Timo Pättikangas, Juho Peltola, Risto Huhtanen, Ville Hovi,
Joona Leskinen and Ismo Karppinen
VTT Technical Research Centre of Finland

Juhaveikko Ala-Juusela and Timo Siikonen
Aalto University

Giteshkumar Patel, Vesa Tanskanen and Elina Hujala
LUT

Tommi Rämä and Timo Toppila
Fortum Power and Heat Oy
Development and Validation of CFD Methods for Nuclear Reactor Safety Assessment

- WP 1: CFD benchmarks on mixing and stratification
 - Participation in OECD/NEA benchmarks

- WP 2: CFD modeling of PPOOLEX experiments
 - Stratification of pressure suppression pool of BWR

- WP 3: OpenFOAM solver for nuclear reactor safety assessment
 - Development and validation of open-source CFD code
 - Co-operation of VTT, Aalto University, LUT, Fortum, KTH and other international partners

- WP 4: Coupled CFD-Apros simulations of NPP components
 - Two-way coupled calculation of steam generator
WP 1: CFD benchmarks on mixing and stratification:

OECD/NEA HYMERES
Panda HP1_6_2 benchmark

Risto Huhtanen
VTT Technical Research Centre of Finland
OECD/NEA–PSI HYMERES Benchmark
Panda Test HP1_6_2

- **Motivation:** Stratification of hydrogen may be important in severe accidents.

- Erosion of density stratification in Panda-vessel
- Experimental arrangement by PSI in Switzerland
- International benchmark, blind simulation of the experiment
- Extensive post simulations in several steps
Computational grid and measuring points

Five cell levels:
Basic grid: 10 cm
Top of Vessel-1 and connection pipe sector of Vessel-2: 5 cm
Plume and connection pipe: 2.5 cm
Plume area: 1.25 cm
Injection pipe and plate: 0.625 cm

Number of cells: 2,872,435 (Blind)
Initial and boundary conditions

Helium [vol]
- Constant flow 58.4...61.2 g/s
- Steam 100%

Density [kg/m3]
- Initial temperature 107 °C
- Steam injection temperature 107°C -> 151 °C
- Injected mixture is lighter than in the lower part, but heavier than in the top part of the vessel
- Constant pressure outlet about 1.3 bar
Used models and methods (Post simulation)

- The commercial code ANSYS Fluent version 16.2 was used.
- Turbulence was modelled with SST $k-\omega$ model, where turbulent buoyancy terms were added.
- Computational grid improvements, more cells (3.4 million).
- Radiation heat transfer was added.
- Injection pipe was included in the calculation.
Temperature
Conclusions

- k-ω SST turbulence model with added buoyancy terms seem to perform well in stratification modelling.
- The post-simulation shows essential improvement when radiation is taken into account.
- Increasing number of cells does not improve the results unless all relevant physical models are included (radiation in this case).
- Calculated temperature is too high already when the jet hits the plate (same result for all simulations).
- The velocity and temperature profiles in pipe exit was boundary condition in the blind simulation.
- In post simulation, the inflow pipe is included in the simulation domain.
WP 2: Simulation of PPOOLEX
sparger test SPA-T1

Risto Huhtanen and Timo Pättikangas
VTT Technical Research Centre of Finland
PPOOLEX test facility at LUT

- Model of a BWR pressure suppression pool.
- Study of formation and breaking of thermal stratification.
- Experiment by Markku Puustinen, Jani Laine and Antti Räsänen (LUT).

Sparger submerged in the water pool.
Motivation: Thermal stratification reduces the capacity of the pressure suppression pool when it is acting as a heat sink.

In the experiment, steam is injected through a pipe into a pool with cold water (13°C)

Injection is done through 8 orifices (ø8 mm) around the pipe

In the stratification phase (13 650 s) steam flow is 30 g/s

In the mixing phase (1 240 s) steam flow is 123 g/s

In the calculation, it is assumed that steam is condensed when entering the pool, direct-contact condensation is not simulated

The mass, momentum and enthalpy of steam are added as a source term to the cells in front of the orifices
Temperature and velocity at the end of the stratification phase, $t = 13\,650\,s$

Temperature

Velocity
Development of temperature profile
Stratification 260 – 13 900 s, mixing 13 900 – 15 150 s
Temperature comparison, vertical Line 1

Stratification near the bottom is not strong enough

<table>
<thead>
<tr>
<th>Point</th>
<th>Height [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4109</td>
<td>2.022</td>
</tr>
<tr>
<td>T4101</td>
<td>0.522</td>
</tr>
</tbody>
</table>
Conclusions

- Stratification of cold bottom part is mainly maintained in the first phase. However, there is too strong mixing in simulation during the stratification phase compared to experiments.
- This could be improved by refining the grid in the density gradient layer.
- The higher steam mass flow in mixing phase mixed the fluid in the simulation properly.
- Due to too effective mixing in the stratification phase, the thermal transient in mixing phase is mild.
- Heat loss to the environment has been taken into account. The influence is not large.
WP 3: OpenFOAM solver for nuclear reactor safety assessment

Juho Peltola and Timo Pättikangas
VTT Technical Research Centre of Finland

Juhaveikko Ala-Juusela and Timo Siikonen
Aalto University

Giteshkumar Patel, Vesa Tanskanen and Elina Hujala
LUT

Tommi Rämä and Timo Toppila
Fortum Power and Heat Oy
WP3: OpenFOAM solver for NRS assessment

- Development and validation of open-source CFD solver in cooperation with national and international partners
- Modelling of Departure from Nucleate Boiling (VTT)
- Direct-contact condensation (LUT)
- Heat transfer in fuel rod bundles (Aalto, Fortum)

Available in the OpenFOAM Foundation development repository: https://github.com/OpenFOAM/OpenFOAM-dev
WP 4: Coupled CFD-Apros simulations of NPP components

Ville Hovi, Timo Pättikangas, Joona Leskinen and Ismo Karppinen
VTT Technical Research Centre of Finland
WP 4: CFD-Apros coupling

VVER-440 steam generator

Water level control

CFD

Pressure measurements

Heat transfer

Steam collector

Break Location

Steam

Feedwater

Feedwater

Emergency Feedwater

Hot Leg

Cold Leg